I’m working on a project to generate text from a 1.2B parameter full precision LLM (5gb)

Unfortunately I’m limited in the infrastructure I can use to deploy this model. There is no batch inference supported. The infrastructure I have allows me to deploy a copy of the model on a single A100, 1 per process with up to 9 processes supported (these are called “replicas”). I understand that this makes little sense given my model is memory bound, and each process will fight for memory bandwidth to read in the same weights, but I can’t change that for now.

My average input and output tokens are roughly 1000 each. I estimate the kv cache per token is roughly 400kB using full precision.

I have benchmarks of the latency of the model using various “replicas” as described above. I wanted to compare this to the theoretical performance of the A100. For my use case time to first token is negligible (<200ms), and generation is memory bound.

I find that with 5 or more replicas, the math works out and my model is roughly as fast as I expect. For example, with 1000 output tokens, 6 replicas, it’s like I’m generating using a batch of 6 requests from a 30gb model + 5gb for the kv cache. At a memory bandwidth around 1-1.3tbps that translates to ~30s per request, which is not far from what I see. The same goes for other replica numbers, 5, 7, 8 and 9.

However, when I run with a single replica, I expect generation to hover around the 5-6s mark on average. Instead, I see > 20s. I need to add 4 more replicas before the number starts to make sense. It almost seems like the model takes up too little memory to be allocated the entire memory bandwidth.

Does anyone know where this extra latency could be coming from? Do models have to reach a certain amount of used memory for A100 memory bandwidth to hit their available memory bandwidth?

  • fediverser@alien.top
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    This post is an automated archive from a submission made on /r/LocalLLaMA, powered by Fediverser software running on alien.top. Responses to this submission will not be seen by the original author until they claim ownership of their alien.top account. Please consider reaching out to them let them know about this post and help them migrate to Lemmy.

    Lemmy users: you are still very much encouraged to participate in the discussion. There are still many other subscribers on !localllama@poweruser.forum that can benefit from your contribution and join in the conversation.

    Reddit users: you can also join the fediverse right away by getting by visiting https://portal.alien.top. If you are looking for a Reddit alternative made for and by an independent community, check out Fediverser.