For the sake of argument, let’s say VRAM is no object.
If I set alpha_value to around 2.5 to 3 when loading a normally 4k base context model, I can get up to about 10k context before things start noticeably falling apart. Extending context higher than this, even if I increase alpha_value higher to go along with it, the model gets progressively less coherent.
I’ve found that I can attenuate this a little bit by messing around with different alpha values at different context loads, but it never really gets usable. It gets closer to where it needs to be, but still nothing I’d actually want to run.
Is this just the nature of the beast when it comes to extending context?
I don’t think it’s so simple as “the nature of the beast.”
From my own experiments, you can maintain coherence by having stuff scale more the further back it is, but at some cost to accuracy. So stuff further back is more confused, but still accessible, and stuff more recent is still grounding the generation.
I haven’t tested super thoroughly though.