If cpu processing is slow af, and gpu takes $$$$ to get enough memory for larger models; I am wondering if an APU could deliver some of that gpu speed, but using cheaper ram to get the larger models in memory; with 128gb of ram, that’s the equivalent of 6x 30/4090s, without allowing for overhead at least!

Wondering if anyone has got any current apu benchmarks vs cpu/gpu? Do you know if the GPU side of APU architecture can be used to get an increase over traditional CPU results?

I’ve been seeing a lot of claims that the ryzen 8000 series is going to be competing with low end Gpus, some people think all the way up to 3060.

If it’s possible to do, it might be the new best way to get large models working for cheap?

  • ccbadd@alien.topB
    link
    fedilink
    English
    arrow-up
    1
    ·
    1 year ago

    I didn’t think so either about the 3d vcache until the article about getting 10X the performance from a ramdrive that came out a few days ago. If it works for ramdrives then surely we can figure a way to use that performance for inferencing.

    • FlishFlashman@alien.topB
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      It’s not going to help because the model data is much larger than the cache and the access pattern is basically long sequential reads.

      • rarted_tarp@alien.topB
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        It might help for LLMs since a lot of values are cached after each loop, but still highly unlikely to make a difference.