Hey everyone, happy to say I’m officially announcing Obsidian V0.5 as part of my work at Nous Research and building upon my work creating the Capybara V1.9 dataset.

This model is blazing fast and is likely the first Multi-modal model that is efficient enough to fit within the ram constraints of even a non-pro iphone! at practical speeds as well!

This model in its current state is largely a multi-modal version of Nous-Capybara-3B which I also only recently released, I’ve designed the dataset with novel synthesis methods (Paper currently being done) it’s made to be robust with conversational abilities and even includes multi-turn data that has been synthesized as a continuation of single turn data examples contained within datasets like Airoboros, Know_logic, EverythingLM and more.

It’s built using Llava 1.5 techniques but instead of a 7B llama as a base, we choose to use the new StableLM 3B model trained for 4 trillion tokens. (We plan to train upon Mistral likely as well)

Any questions or feedback are much appreciated!

Download here: https://huggingface.co/NousResearch/Obsidian-3B-V0.5

Or download quantized version here, Courtesy of Nisten: https://huggingface.co/nisten/obsidian-3b-multimodal-q6-gguf

    • dogesator@alien.topOPB
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      So far have only benchmarked Hellaswag and Arc Challenge but it’s significantly beating both WizardLM-13B and GPT4-X-Vicuna-13B on both benchmarks! These are not the latest sota models ofcourse but it’s amazing to see how this 3B model is surpassing the best 13B models of just 6 months ago.

      I’ll see if we can have it benchmarked officially on the HF leaderboard this week so people can see how it compares with latest models.